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ABSTRACT: 

A novel series of thiazolyl hydrazones (5a-k) was synthesized using a green chemistry 

approach. This was achieved by subjecting 2-(2-acetamido-thiazol-4-yl)acetohydrazide 3 to 

nucleophilic addition reactions with substituted aromatic/heterocyclic aldehydes (4a-k). The 

hydrazones (5a-k) were obtained in high yield without the need for further purification and 

could serve as important precursors for synthesizing bioactive natural products and drug 

molecules. The structures of the products were determined using analytical, spectral, and 

single-crystal X-ray diffraction analyses. 
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INTRODUCTION:  

Hydrazones have an azomethine -NHN=CH- proton and constitute the important class of 

alkaloids and various biologically active compounds, i.e., Pectinatonei and 

Cinachyramineii (Figure 1). 

 

 
Figure 1. Biologically active hydrazones. 

Thus, the utility of hydrazides as key intermediates in the synthesis of several heterocyclic 

compounds and of their antimicrobial, antituberculosis and antitumour activitiesiii-vi has 

aroused interest in exploring them as versatile precursors for the synthesis of various 

substituted heterocycles. Likewise, the sulfur containing thiazole nucleus systems are found 

important heterocyclic moiety and present in natural products e.g., vitamin B1vii, penicillinviii 

and also used in drug production to treat allergiesix, hypertensionx, inflammationxi, bacterialxii, 

and HIV infectionsxiii. Thiazolyl hydrazonesxiv-xvi have shown promising biological activity 

against microbial infections. Therefore, we aimed to synthesize a new series of thiazole-
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containing molecules with bioactive heterocyclic/aromatic rings using hydrazone formation. 

We optimized a simple and efficient synthetic green method with excellent yields. Scheme I 

illustrate the synthetic pathway. 

 

EXPERIMENTAL: 

A digital melting point apparatus was used to record the melting points of the synthesized 

compounds. The proton NMR and carbon NMR spectra were obtained using a Bruker-DRX 

(300 MHz) and Bruker Advance (75 MHz), respectively, in solvent DMSO-d6/CDCl3 with 

TMS as the internal standard. The Mass spectra (TOF ES+) were recorded on an LCTKC455 

(Micromass Autospec). The Perkin Elmer-2000 Spectrophotometer instrument was used to 

record the Infrared (FTIR) spectra. The X-ray diffraction parameters were collected using an 

Oxford X-Calibur Single Crystal Diffractometer instrument with a Sapphire CCD detector. The 

synthesis of 2-amino-4-(carboethoxymethyl)thiazole (1)xvii, 2-acetamido-4-

(carboethoxymethyl)thiazole (2)xviii, and 2-(2-acetamidothiazol-4-yl)acetohydrazide (3)xix 

were carried out following the literature. 

  

GENERAL PROCEDURE: 

 

General procedure for the preparation of thiazolyl hydrazones (5a-k).  

To synthesize compounds 5a-k, a mixture of 2-(2-acetamido-thiazol-4-yl) acetohydrazide (3) 

(0.5 mmol) and aromatic/heterocyclic, aldehyde (0.5 mmol) (4a-k) was vigorously stirred in 

20 mL of water at 80°C. The reaction progress was monitored using TLC. After one hour, the 

reaction content was allowed to cool and settle. The resulting white precipitate was filtered, 

and compounds 5a-k were obtained after drying. 

 

(E)-N-(4-(2-(2-benzylidenehydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5a).  

Rf: 0.43 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 197 C; Infrared (IR) Spectroscopy 

  (cm-1): 3290, 3159, 2985, 1719, 1667, 1499, 1359, 1237, 1138, 709. 1H NMR (): 11.80 

(broad singlet, 1H, NH, D2O exchangeable proton), 11.13 (broad singlet, 1H, >NH, D2O 

exchangeable proton), 7.64 (multiplet, 2H), 7.49 (multiplet, 2H), 7.45 (singlet, 1H, =CH), 7.30 

(multiplet, 1H), 6.70 (singlet, 1H), 3.84 (singlet, 2H, CH2), 1.98 (singlet, 3H, COCH3). 
13C 

NMR ():  171.2 (C=O, amide), 168.9 (C=O, acetyl),  155.8 (C=N, hydrazone), 144.4, 142.8, 

140.5, 133.2, 128.4, 127.8, 126.0, 106.7, 37.6, 23.2. Mass spectrum (MS), m/z (%): 303.201 

(M++1). 

(E)-N-(4-(2-(2-(4-fluorobenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5b). 

Rf: 0.45 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 208 C; Infrared (IR) Spectroscopy 

  (cm-1): 3345, 2893, 1722, 1636, 1459, 1220, 1148, 711. 1H NMR (): 11.78 (broad singlet, 

1H, NH, D2O exchangeable proton), 11.16 (broad singlet, 1H, >NH, D2O exchangeable 

proton), 7.69 (doublet, 2H, Jcoupling constant = 8.4 Hz), 7.58 (singlet, 1H, =CH), 7.36 (doublet, 2H, 

Jcoupling Constant = 8.4 Hz), 6.73 (singlet, 1H), 4.07 (singlet, 2H, CH2 ), 2.13 (singlet, 3H, COCH3). 
13C NMR ():  175.7 (C=O, amide), 167.2 (C=O, acetyl),  154.6 (C=N, hydrazone), 144.8, 

143.2, 138.2, 129.4, 128.8, 126.4, 106.4, 37.2, 22.9. Mass spectrum (MS), m/z (%):  321.121 

(M++1).  

(E)-N-(4-(2-(2-(4-chlorobenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5c).  

 Rf: 0.46 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 212 C; Infrared (IR) Spectroscopy 

  (cm-1): 3355, 3201, 2924, 1751, 1676, 1427, 1297, 1181, 712. 1H NMR (): 11.89 (singlet, 

1H, NH, D2O exchangeable proton), 11.43 (broad singlet, 1H, >NH, D2O exchangeable 

proton), 8.11 (singlet, 1H, =CH), 7.67 (doublet, 2H, Jcoupling constant = 8.4 Hz), 7.49 (duoblet, 2H, 



 

 

L.Vodwal et al. / Heterocyclic Letters Vol. 13| No.2|353-361|February-April|2023 
 

355 

 

Jcoupling constant = 8.4 Hz), 6.70 (singlet, 1H), 4.11 (singlet, 2H, CH2 ), 2.42 (singlet, 3H, COCH3). 
13C NMR ():  173.5 (C=O, amide), 167.7 (C=O, acetyl),  155.6 (C=N, hydrazone), 144.9, 

144.6, 137.1, 130.4, 127.7, 126.8, 105.4, 36.9, 22.4. Mass spectrum (MS), m/z (%):  337.001 

(M++1). 

(E)-N-(4-(2-(2-(4-bromobenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5d).  

Rf: 0.48 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 235 C; Infrared (IR) Spectroscopy 

  (cm-1): 3352, 3298, 2928, 1754, 1670, 1510, 1303, 1110, 720.1H NMR (): 11.79 (broad 

singlet, 1H, NH, D2O exchangeable), 11.31 (broad singlet, 1H, >NH, D2O exchangeable), 8.21 

(singlet, 1H, =CH),  7.61 (doublet, 2H, Jcoupling constant = 8.0 Hz), 7.12 (doublet, 2H, Jcoupling constant 

= 8.0 Hz), 6.90 (singlet, 1H), 4.01 (singlet, 2H, CH2), 2.19 (singlet, 3H, COCH3).
 13C NMR 

():  171.9 (C=O, amide), 169.1 (C=O, acetyl),  155.7 (C=N, hydrazone), 144.4, 143.7, 137.8, 

134.4, 126.4, 125.8, 107.4, 35.6, 22.7.  Mass spectrum (MS), m/z (%):  381.007 (M++1).  

 (E)-N-(4-(2-(2-(4-methylbenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5e).  

Rf: 0.40 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 232 C; Infrared (IR) Spectroscopy 

  (cm-1): 3430, 3170, 2966, 1752, 1654, 1549, 1396, 1307, 1276, 1235, 1019, 788. 1H NMR 

(): 11.86 (broad singlet, 1H, NH, D2O exchangeable), 11.27 (broad singlet, 1H, >NH, D2O 

exchangeable), 8.25 (singlet, 1H, =CH), 7.55 (doublet, 2H, Jcoupling constant = 8.2 Hz),  7.12 

(doublet, 2H, Jcoupling constant = 8.2 Hz), 6.95 (singlet, 1H), 4.12 (singlet, 2H, CH2), 2.30 (singlet, 

3H, CH3), 2.08 (singlet, 3H, COCH3). 
13C NMR ():  172.2 (C=O, amide), 169.2 (C=O, acetyl),  

155.9 (C=N, hydrazone), 146.4, 144.5, 139.8, 131.4, 129.2, 124.5, 108.2, 35.16, 21.0.  Mass 

spectrum (MS), m/z (%):  317.107 (M++1). 

(E)-N-(4-(2-(2-(4-methoxybenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5f).  

Rf: 0.46 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 222 C; Infrared (IR) Spectroscopy 

  (cm-1): 3318, 3192, 2964, 1760, 1665, 1563, 1374, 1248, 1239, 962, 827, 758. 1H NMR (): 

12.03 (broad singlet, 1H, NH, D2O exchangeable), 11.42 (broad singlet, 1H, >NH, D2O 

exchangeable), 8.34 (singlet, 1H, =CH),  7.59 (doublet, 2H, Jcoupling constant = 8.1 Hz), 7.01 

(doublet, 2H, Jcoupling constant = 8.2 Hz), 6.87 (singlet, 1H), 3.98 (singlet, 2H, CH2), 3.87 (singlet, 

3H, OCH3), 2.22 (singlet, 3H, COCH3). 
13C NMR ():  173.4 (C=O, amide), 169.4 (C=O, 

acetyl),  155.2 (C=N, hydrazone), 147.1, 144.8, 139.2, 131.7, 130.2, 124.9, 108.9, 55.2, 36.26, 

24.0. Mass spectrum (MS), m/z (%):  333.10 (M++1).  

(E)-N-(4-(2-(2-(3,4-dimethoxybenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide 

(5g).  

Rf: 0.42 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 229 C; Infrared (IR) Spectroscopy 

  (cm-1): 3319, 3190, 2929, 1742, 1670, 1549, 1270, 1241, 1026, 746.  1H NMR (): 12.11 

(broad singlet, 1H, NH, D2O exchangeable), 11.43 (broad singlet, 1H, >NH, D2O 

exchangeable), 8.21(singlet, 1H, =CH),  7.23 (singlet, 1H), 7.21 (doublet, 1H, Jcoupling constant = 

8.1 Hz), 7.18 (doublet, 1H, Jcoupling constant = 8.1 Hz), 6.97 (singlet, 1H), 4.03 (singlet, 2H, CH2), 

3.78 (singlet, 6H, 2x OCH3), 1.87 (singlet, 3H, COCH3). 
13C NMR (): 173.4 (C=O, amide), 

170.1 (C=O, acetyl),  157.4 (C=N, hydrazone), 150.5, 144.9, 142.6, 126.8, 121.5, 111.3, 109.5, 

108.1, 55.4, 38.5, 22.3. Mass spectrum (MS), m/z (%):  363.301 (M++1). 

 

(E)-N-(4-(2-oxo-2-(2-(3,4,5-trimethoxybenzylidene)hydrazinyl)ethyl)thiazol-2-yl)acetamide 

(5h).  

Rf: 0.40 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 236 C; Infrared (IR) Spectroscopy 

  (cm-1): 3352, 3218, 2970, 1734, 1670, 1582, 1324, 1278, 1127, 741.  1H NMR (): (broad 

singlet, 1H, NH, D2O exchangeable), 11.52 (broad singlet, 1H, >NH, D2O exchangeable), 7.49 

(singlet, 1H, =CH),  6.99 (singlet, 2H), 6.90 (singlet, 1H), 4.01 (singlet, 2H, CH2), 3.84 (singlet, 
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6H, 2x OCH3), 3.69 (singlet, 3H, OCH3),  2.16 (singlet, 3H, COCH3). 
13C NMR (): 170.0 

(C=O, amide), 168.3 (C=O, acetyl),  158.1 (C=N, hydrazone), 165.3, 157.6, 153.1, 146.4, 

145.0, 142.5, 139.1, 129.7, 109.6, 103.8, 60.5 (2x OCH3), 55.4 (OCH3), 38.8 (CH2), 22.3 

(COCH3). Mass spectrum (MS), m/z (%):  393.101 (M++1).  

(E)-N-(4-(2-(2-(4-hydroxy-3-methoxybenzylidene)hydrazinyl)-2-oxoethyl)thiazol-2-

yl)acetamide (5i).  

Rf: 0.46 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 230 C; Infrared (IR) Spectroscopy 

  (cm-1): 3479, 3211, 2925, 1731, 1706, 1670, 1595, 1517, 1130, 1077, 720. 1H NMR (): 

11.95 (broad singlet, 1H, NH, D2O exchangeable), 11.13 (broad singlet, 1H, >NH, D2O 

exchangeable), 8.77 (singlet, 1H, OH, D2O exchangeable), 7.80 (singlet, 1H, =CH),   6.88 

(singlet, 1H), 6.69 (doublet, 1H, Jcoupling constant =8.1 Hz), 6.78 (doublet, 1H, Jcoupling constant =8.1 

Hz),  6.64 (singlet, 1H), 4.04 (singlet, 2H, CH2), 3.86 (singlet, 3H, OCH3), 2.26 (singlet, 3H, 

COCH3). 
13C NMR (): 170.9 (C=O, amide), 168.3 (C=O, acetyl),  165.0, 158.4(C=N, 

hydrazone), 165.1, 148.8, 145.3, 143.8, 125.2, 121.9, 115.4, 109.4, 55.2, 38.4, 22.9. Mass 

spectrum (MS), m/z (%):  349.106 (M++1).  

(E)-N-(4-(2-(2-(furan-2-ylmethylene)hydrazinyl)-2-oxoethyl)thiazol-2-yl)acetamide (5j).  

Rf: 0.45 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 204 C; Infrared (IR) Spectroscopy 

  (cm-1): 3487, 3199, 2924, 1733, 1679, 1601, 1543, 1465, 1270, 997, 745. 1H NMR (): 11.79 

(broad singlet, 1H, NH, D2O exchangeable), 11.13 (broad singlet, 1H, >NH, D2O 

exchangeable), 8.10 (singlet, 1H, =CH),   7.55 (doublet, 1H, Jcoupling constant =7.9 Hz ), 6.67 

(doublet, 1H, Jcoupling constant =7.9 Hz), 6.52 (multiplet, 1H),  6.43 (singlet, 1H), 4.05 (singlet, 

2H, CH2 ), 2.19 (singlet, 3H, COCH3). 
13C NMR (): 170.1 (C=O, amide), 168.7 (C=O, acetyl),  

165.5, 158.2 (C=N, hydrazone), 149.3, 145.1, 136.3, 133.0, 113.4, 112.1, 109.8, 37.3, 22.4. 

Mass spectrum (MS), m/z (%):  293.213 (M++1).  

(E)-N-(4-(2-oxo-2-(2-(thiophen-2-ylmethylene)hydrazinyl)ethyl)thiazol-2-yl)acetamide  

(5k). 

 Rf: 0.44 (98:2 CHCl3: CH3OH, v/v); melting point (m.p.) 211 C; Infrared (IR) Spectroscopy 

  (cm-1): 3199, 3044, 2925, 2857, 1736, 1663, 1597, 1551, 1374, 1085, 982, 855, 716. 1H 

NMR (, DMSO-d6, 400 MHz): 11.78 (broad singlet, 1H, NH, D2O exchangeable), 11.35 

(broad singlet, 1H, >NH, D2O exchangeable), 7.78 (singlet, 1H, =CH),  7.49 (doublet, 1H, 

Jcoupling constant = 7.7 Hz), 7.44 (doublet, 1H, Jcoupling constant =  7.7 Hz), 7.22 (multiplet, 1H), 6.64 

(singlet, 1H), 4.11 (singlet, 2H, CH2 ), 2.20 (singlet, 3H, COCH3). 
13C NMR (): 170.8 (C=O, 

amide), 169.3 (C=O, acetyl),  165.7, 158.9 (C=N, hydrazone), 157.4, 144.7, 141.6, 139.1, 

130.4, 128.8, 109.0, 38.4, 22.2. Mass spectrum (MS), m/z (%):  309.014 (M++1). 

The monoclinic system X-ray data for 5a (C14H14N4O2S1): space group P21/c, V= 1455.3(2) 

Å3, a = 11.2863(10) Å, b = 15.2072(8) Å, c = 9.0656(10) Å, α = 90°, β= 110.722(11)°, γ = 90°,  

crystal dimensions of 0.22 x 0.18 x 0.14 mm3, the absorption coefficient of 0.22 mm-1, and a 

unit cell volume of 1455.3(2) Å3. The crystal structure was solved using SHELXS software 

and refined using SHELXL of the X-Stepxx suite of programs. Anisotropic refinement of non-

hydrogen atoms was done using full-matrix least-squares on F2 values, resulting in final 

R1=0.0548 and wR2=0.1614 for reflections (observed) and R1=0.0658 and wR2=0.1877 for 

all reflections and 195 parameters. Hydrogen atoms were placed according to the expected 

geometry and were not refined. Crystallographic data for 5a (CCDC 829123) have been 

submitted to the Cambridge Crystallographic Data Centre. 

 

RESULTS AND DISCUSSION:  

The synthetic approach adopted for the preparation of the target molecules is depicted in 

Scheme-I.  
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Compound 2-amino-4-(carboethoxymethyl)thiazole (1) was subjected to a series of reactions 

to synthesize hydrazone (5a). First, acetic anhydride was used to treat compound 1 for 1 hour 

to yield compound 2. Subsequently, compound 2 was reacted with hydrazine hydrate for 2 

hours to produce its hydrazide 3. Compound 3 was then reacted with aromatic aldehydes (4a) 

in an equimolar ratio for vigorous stirring for 1 hour to obtain hydrazone (5a), which exhibited 

a molecular ion peak (M++1) at m/z 303.201 in TOF ES+. This indicated that two molecules 

had reacted with the loss of one molecule of water, and the molecular formula of the product 

was C14H14N4O2S. The formation of the respective hydrazone was confirmed by an absorption 

band at 1667 cm-1 for >C=N stretching in the Infra-Red spectrum of compound 5a. Moreover, 

the presence of NH stretching was depicted by a broad band at 3290-3159 cm-1, and two D2O 

exchangeable protons in the 1H NMR spectrum were observed as characteristic singlets at  

11.80 and 11.13. Additionally, six aromatic protons of both the condensed nucleus appeared 

at 7.64 (multiplet, 2H), 7.49 (multiplet, 2H), 7.30 (multiplet, 1H), and 6.70 (singlet, 1H), 

while the 13C NMR spectrum displayed all the expected peaks for acetyl carbonyl, hydrazone 

formation, and aromatic carbons. Scheme-I outlines the entire process. 

 
Scheme 1. Synthesis of (E)-N-(4-(2-(2-benzylidenehydrazinyl)-2-oxoethyl)thiazol-2-

yl)acetamide (5a) using aldehyde and thiazolyl hydrazide. 

The scope of the above scheme was also investigated using 2-(2-acetamido-thiazol-4-

yl)acetohydrazide (3) and various aromatic/ heterocyclic aldehydes 4a-k which are provided 

in Table 1 

 

Table 1. Synthesis of various hydrazones and their yields 

Entry Aldehydes 2 Product 3 Yield (%)a 

1 

 

 

96 
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2 

 

 

95 

3 

 

 

93 

4 

 

 

96 

5 

 

 

95 

6 

 

 

94 

7 

 

 

96 

8 

  

96 

9 

  

96 

10 

 

 

89 
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11 

 

 

92 

Notes:  aYields refer to isolated products. 

 

The substitution of the aromatic or heterocyclic ring with either electron-donating (alkyl) or 

electron-withdrawing (F, Cl, Br) groups was not found to significantly affect the final product 

yields. This observation was supported not only by analyzing the spectral data of all the 

compounds 5a-5k but also by performing single crystal X-ray studies of 5a (Figure 2). 

 
Figure 2.  X-ray crystal structure  of 5a (CCDC 829123). 

 

CONCLUSION: 

A novel set of thiazolyl hydrazones (5a-k) were synthesized using an eco-friendly method with 

significantly high yields. The hydrazone derivatives were prepared by introducing aldehydes 

to thiazolyl hydrazide in water, resulting in a straightforward reaction scheme completed in a 

short time with high product purity without the need for column chromatography. These 

hydrazones hold potential as building blocks for the synthesis of bioactive natural products and 

other drug molecules. The reaction can also be performed in a protic solvent, and the product 

yields of the synthesized compounds are unaffected by the presence of either a base or an acid. 
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